Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Tricarbonyl[1,1',1"-ethylidynetris-(pyrazole- κN^{2})]rhenium(I) bromide and tricarbonyl[methylidynetris-(pyrazole- κN^{2})]rhenium (I) iodide ethanol hemisolvate

Dorothy H. Gibson,* Mark S. Mashuta and Haiyang He

Department of Chemistry, University of Louisville, Louisville, KY 40292, USA Correspondence e-mail: dorothy.gibson@louisville.edu

Received 11 April 2001
Accepted 6 June 2001

The two title compounds, $\left[\operatorname{Re}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{3}\right] \mathrm{Br}$ and $[\mathrm{Re}-$ $\left.\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{6}\right)(\mathrm{CO})_{3}\right] \mathrm{I} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$, have slightly distorted octahedral geometries about the rhenium centers. The distortions result from the constraints of the η^{3}-coordinated tris(pyrazol-1-yl)methane ligands in each case which reduce the $\mathrm{N}-\mathrm{Re}-$ N bond angles well below the preferred value of 90° for facially disposed ligands at a six-coordinate metal center.

Comment

The title compounds, (I) and (II), respectively, have been prepared as part of a general study of ligand systems which are capable of variable denticity. The tris(pyrazol-1-yl)methane ligand $\left[\mathrm{HC}(\mathrm{pz})_{3}\right]$ has previously demonstrated the capacity for either bidentate or tridentate coordination (Macchioni et al., 1998). Flexibility in changing between these two coordination modes may play an important role in catalytic processes, as demonstrated for some of the closely related tris(pyrazol-1yl)borate complexes (Bromberg et al., 1997). Compounds (I) and (II) have been characterized in order to increase our knowledge of the structural charcterstics of metal complexes with this ligand.

An ORTEP-3 diagram (Farrugia, 1997) of (I) is shown in Fig. 1. The constraints of the η^{3}-coordinated $\mathrm{HC}(\mathrm{pz})_{3}$ ligand reduce the $\mathrm{N}-\mathrm{Re}-\mathrm{N}$ bond angles well below the preferred value of 90°. The $\mathrm{N}-\mathrm{Re}-\mathrm{N}$ bond angles in (I) are also smaller [average $\left.81.4(1)^{\circ}\right]$ than those in $\left[\mathrm{HC}\left(3-{ }^{i} \operatorname{Prpz}\right)_{3} \mathrm{Mn}-\right.$ $\left.(\mathrm{CO})_{3}\right]\left(\mathrm{SO}_{3} \mathrm{CF}_{3}\right)$ (Reger et al., 2000), which average $85.0(3)^{\circ}$. The $\mathrm{C}-\mathrm{Re}-\mathrm{C}$ bond angles associated with the three facial carbonyl groups in (I) average $88.8(3)^{\circ}$, whereas the corresponding angles in the Mn complex are slightly greater, with an average of $89.6(5)^{\circ}$. The constraints of the $\mathrm{HC}(\mathrm{pz})_{3}$ ligand in (I) also ensure that trans arrangements, such as C3-ReN 1 , will be well below 180°; they range from 173.5 (2) ${ }^{\circ}$ for $\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 1$ to $176.4(2)^{\circ}$ for $\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 5$, and are all bent
toward the $\mathrm{HC}(\mathrm{pz})_{3}$ ligand. The corresponding angles in the manganese complex are slightly larger, ranging from 175.7 (4) to $177.7(4)^{\circ}$, reflecting the influence of the isopropyl substituents at position 3 of the pyrazole ring.

(I)

(II)

An ORTEP-3 diagram (Farrugia, 1997) of (II) is shown in Fig. 2; similar distortions are seen in (II). The bond angles for the trans groups, such as $\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 1$, are again well below 180°; they range from $172.8(3)^{\circ}$ for $\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 3$ to $174.8(2)^{\circ}$ for $\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 1$. The $\mathrm{N}-\mathrm{Re}-\mathrm{N}$ bond angles are even smaller in (II) than in (I) [average 80.5 (2) ${ }^{\circ}$], but the $\mathrm{C}-\mathrm{Re}-$ C bond angles associated with the three facial carbonyl groups are slightly larger than the corresponding angles in (I) [average $89.4(4)^{\circ}$]. Replacement of hydrogen by methyl in

Figure 1
ORTEP-3 (Farrugia, 1997) view of (I) showing 45% displacement ellipsoids. H atoms and the label for C13 have been omitted for clarity.

Figure 2
ORTEP-3 (Farrugia, 1997) view of (II) showing 45% displacement ellipsoids. H atoms and the label for C 13 have been omitted for clarity.
$\mathrm{CH}_{3} \mathrm{C}(\mathrm{pz})_{3}$ does not appear to cause any significant distortions in the complex.

Experimental

The synthesis of (I) was carried out by refluxing $\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Br}$ and tris(pyrazol-1-yl)methane (1:1) in ethanol for 4 h . Crystals were obtained after allowing the solution to cool overnight to 295 K . Stirring (I) with sodium methoxide (1:1) in methanol for 30 min effected its deprotonation; the neutral product was isolated by evaporation of the solvent followed by extraction into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Addition of excess $\mathrm{CH}_{3} \mathrm{I}$ to this extract, followed by stirring for 4 h , converted the neutral compound to (II). The crude product, (II), was isolated as a colorless solid by evaporating the methylene chloride. Crystals of (II) were obtained by dissolving the product in ethanol and allowing the solution to stand for several days at 253 K .

Compound (I)

Crystal data

$\left[\mathrm{Re}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{3}\right] \mathrm{Br}$	$D_{x}=2.183 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=564.38$	Mo $K \alpha$ radiation
Monoclinic, C2/c	Cell parameters from 25
$a=21.565$ (4) \AA	reflections
$b=9.002$ (2) \AA	$\theta=15.0-18.0^{\circ}$
$c=18.396$ (4) \AA	$\mu=9.43 \mathrm{~mm}^{-1}$
$\beta=105.93$ (3) ${ }^{\circ}$	$T=293$ (2) K
$V=3434$ (1) \AA^{3}	Block, colorless
$Z=8$	$0.33 \times 0.26 \times 0.17 \mathrm{~mm}$
Data collection	
Enraf-Nonius CAD-4	$R_{\text {int }}=0.036$
diffractometer	$\theta_{\text {max }}=27.5^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 27$
Absorption correction: ψ scan	$k=-11 \rightarrow 0$
(North et al., 1968)	$l=-23 \rightarrow 23$
$T_{\text {min }}=0.07, T_{\text {max }}=0.21$	3 standard reflections
4033 measured reflections	frequency: 60 min
3929 independent reflections	intensity decay: <2\%

$\left[\mathrm{Re}\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6}\right)(\mathrm{CO})_{3}\right] \mathrm{Br}$
$M_{r}=564.38$
Monoclinic, $C 2 / c$
$a=21.565$ (4) A
$b=9.002$ (2) A
.3.36 (4) A
$\beta=105.93(3)^{\circ}$
$Z=8$
Data collection
Enraf-Nonius CAD-4 diffractometer

Absorption correction: ψ scan (North et al., 1968)
$T_{\min }=0.07, T_{\text {max }}=0.21$

3929 independent reflections
3172 reflections with $I>2 \sigma(I)$

Refinement
Refinement on F^{2}
$(\Delta / \sigma)_{\max }=0.01$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$\Delta \rho_{\max }=0.55$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.59 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00343 (9)
$S=1.06$
218 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0412 P)^{2}\right.$
$+1.98 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Re}-\mathrm{C} 1$	$1.913(6)$	$\mathrm{Re}-\mathrm{N} 1$	$2.181(4)$
$\mathrm{Re}-\mathrm{C} 2$	$1.911(5)$	$\mathrm{Re}-\mathrm{N} 3$	$2.172(4)$
$\mathrm{Re}-\mathrm{C} 3$	$1.925(6)$	$\mathrm{Re}-\mathrm{N} 5$	$2.175(4)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 2$	$89.5(3)$	$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 5$	$92.5(2)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 3$	$88.6(3)$	$\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 1$	$173.5(2)$
$\mathrm{C} 2-\mathrm{Re}-\mathrm{C} 3$	$88.2(2)$	$\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 3$	$94.4(2)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 1$	$96.2(2)$	$\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 5$	$94.4(2)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 3$	$95.1(2)$	$\mathrm{N} 1-\mathrm{Re}-\mathrm{N} 3$	$80.9(1)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 5$	$176.4(2)$	$\mathrm{N} 1-\mathrm{Re}-\mathrm{N} 5$	$80.6(1)$
$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 1$	$96.1(2)$	$\mathrm{N} 3-\mathrm{Re}-\mathrm{N} 5$	$82.8(1)$
$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 3$	$174.8(2)$		

Compound (II)

Crystal data
$\left[\operatorname{Re}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{6}\right)(\mathrm{CO})_{3}\right] \mathrm{I} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
$M_{r}=648.44$
Monoclinic, $P 2_{1} / n$
$a=12.361$ (3) A
$b=11.803(2) \AA$
$c=15.543$ (3) A
$\beta=108.83(3)^{\circ}$
$V=2146.3(7) \AA^{3}$
$Z=4$
$D_{x}=2.022 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=15.0-18.0^{\circ}$
$\mu=7.13 \mathrm{~mm}^{-1}$
Block, colorless

Data collection
Enraf-Nonius CAD-4
$R_{\text {int }}=0.068$
diffractometer
$\theta_{\text {max }}=27.5^{\circ}$
$\omega / 2 \theta$ scans
$h=-16 \rightarrow 16$
Absorption correction: ψ scan North et al. (1968) $T_{\text {min }}=0.08, T_{\text {max }}=0.20$
$k=0 \rightarrow 15$
$l=0 \rightarrow 20$
5073 measured reflections
3 standard reflections

4896 independent reflections frequency: 60 min

4128 reflections with $I>2 \sigma(I)$
intensity decay: <2\%

Table 2
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$) for (II).

$\mathrm{Re}-\mathrm{C} 1$	$1.901(8)$	$\mathrm{Re}-\mathrm{N} 1$	$2.168(5)$
$\mathrm{Re}-\mathrm{C} 2$	$1.920(7)$	$\mathrm{Re}-\mathrm{N} 3$	$2.169(5)$
$\mathrm{Re}-\mathrm{C} 3$	$1.922(8)$	$\mathrm{Re}-\mathrm{N} 5$	$2.152(6)$
$\mathrm{Re}-\mathrm{N} 5$	$2.152(6)$		
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 2$	$91.1(3)$	$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 5$	$92.9(3)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 3$	$89.0(3)$	$\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 5$	$95.2(3)$
$\mathrm{C} 2-\mathrm{Re}-\mathrm{C} 3$	$87.8(3)$	$\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 3$	$96.0(2)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 1$	$94.8(3)$	$\mathrm{C} 3-\mathrm{Re}-\mathrm{N} 1$	$174.8(2)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 3$	$95.1(3)$	$\mathrm{N} 1-\mathrm{Re}-\mathrm{N} 3$	$80.17(18)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{N} 5$	$174.3(3)$	$\mathrm{N} 1-\mathrm{Re}-\mathrm{N} 5$	$80.77(19)$
$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 1$	$95.6(3)$	$\mathrm{N} 3-\mathrm{Re}-\mathrm{N} 5$	$80.7(2)$
$\mathrm{C} 2-\mathrm{Re}-\mathrm{N} 3$	$172.8(3)$		

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.123$
$S=1.12$
4896 reflections
254 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0778 P)^{2}\right. \\
& \quad+1.9504 P] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.014 \\
& \Delta \rho_{\max }=1.37 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.29 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0094(5)
\end{aligned}
$$

The H -atom positions for both compounds were calculated and their refinement was constrained with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the pyrazole, methylene and methine H atoms. For the methyl groups, the torsion angle which defined the orientation was not allowed to refine, and these atoms were assigned $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The occupancy factor of the ethanol solvate was varied during the initial stages of the refinement; since the value converged to about 0.5 it was set at 0.5 for the final cycles. The highest peak in (I) is located $0.93 \AA$ from Re, $1.39 \AA$ from C1 and $1.93 \AA$ from N3, and the deepest trough is $0.98 \AA$ from Re and $1.35 \AA$ from N5. In (II), the highest peak and deepest trough are $1.24 \AA$ from Re and 1.02 Å from C2, respectively.

For both compounds, data collection: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1988); cell refinement: CAD-4 Diffractometer Control Software; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Support of this work by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, is gratefully acknowledged. The X-ray equipment was purchased with assistance from the National Science Foundation (grant No. CHE-9016978).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1610). Services for accessing these data are described at the back of the journal.

References

Bromberg, S. E., Yang, H., Asplund, M. C., Lian, T., McNamara, B. K., Kotz, K. T., Yeston, J. S., Wilkens, M., Frei, H., Bergman, R. G. \& Harris, C. B. (1997). Science, 278, 260-263.

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Enraf-Nonius (1988). CAD-4 Diffractometer Control Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Macchioni, A., Bellachioma, G., Cardaci, G., Cruciani, G., Foresti, E., Sabatino, P. \& Zuccaccia, C. (1998). Organometallics, 17, 5549-5556.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. \& Sommer, R. D. (2000). J. Organomet. Chem. 607, 120128.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

